Lade Veranstaltungen

« Alle Veranstaltungen

  • Diese Veranstaltung hat bereits stattgefunden.

Felix-Klein-Kolloquium | Vortrag »Boundary value problems with rough boundary data«

9. Januar 2024, 17:15 - 18:30

A typical example of a boundary value problem is given by
(λ− ∆)u  =  f  in G,
         u   on ∂G,

where λ > 0 and ⊂ Ris a bounded and sufficiently smooth domain. For ∈ L2(G), the natural solution space for is the second-order Sobolev space H2(G). For the boundary data g, the canonical space is given by H3/2(∂G) – this is a Sobolev space of non-integer order, which indicates a connection to the theory of function spaces. If ∈ Lp(G) for some ∈ (1,∞), we get ∈ Wp2(G), and the canonical boundary space is the Besov space of order 2 − 1/p.

In some applications, the boundary data are not smooth enough to apply the classical theory. This happens, for instance, if we have a stochastic force term on the boundary (boundary noise) and/or some dynamics on the boundary. For this, one has to generalize the trace map → u|∂G, including even Besov spaces of negative order for the boundary data. One can show unique solvability for a general class of boundary value problems and the generation of an analytic semigroup in the case of dynamic boundary conditions. Applications include the Bi-Laplacian with Wentzell boundary conditions, the linearized Cahn-Hilliard equation with dynamic boundary conditions, and coupled plate-membrane systems.

Referent: Prof. Dr. Robert Denk, Universität Konstanz

Der Vortrag findet um 17.15 Uhr im Raum 210 des Mathematik-Gebäudes 48 statt.

Studierende, Doktorandinnen und Doktoranden sowie Wissenschaftlerinnen und Wissenschaftler des Fachbereichs Mathematik der RPTU und des Fraunhofer ITWM sind herzlich zum Kolloquium eingeladen!

Details

Datum:
09.01.2024
Zeit:
17:15 - 18:30
Veranstaltungskategorie:

Veranstaltungsort

RPTU in Kaiserslautern, Geb. 48, Raum 210
Kaiserslautern, Deutschland